
Subsequences revisited.  

For a function 𝑓: 𝑋 → 𝑌 and any subset A of X we use the term restriction for the function 

𝑓|𝐴: 𝐴 → 𝑌 whose domain is A and for each a A 𝑓|𝐴(𝑎) = 𝑓(𝑎).  

For example, 𝑥2
|<0;∞) becomes a 1-1 function.  

 

The solid red line is the graph of function f(x)=x2 restricted to <0;). The restricted function 

is 1-1 (the original is not), hence invertible. The blue line is the graph of its inverse, √𝑥. 

The spotted red line is the graph of x2 restricted to (−∞; 0>. (Picture from Wikipedia). 

Since a sequence is a function from ℕ into ℝ you may think of a subsequence of a sequence 

as a restriction of the sequence to an infinite subset of ℕ. („As a what of what to what?!” – 

Winnie the Pooh). 

Comprehension (subsequences).  

What kind of a sequence is  

(a) (𝑎2𝑛) if (𝑎𝑛) is an arithmetic sequence with the increment d, 

(b) (𝑎2𝑛) if (𝑎𝑛) is a geometric sequence with the quotient q, 

(c) (𝑎2𝑛)𝑛=0
∞  if (𝑎𝑛) is the arithmetic sequence with the increment d and a1=d? 

Comprehension (geometric sequences). 

Assuming daily infection rate of 10% (i.e. every day the number of new infections is 10% 

more than the previous day) and there was a single infected person at the beginning how long 

does it take to infect 8 billion individuals? Ignore the fact that the model is unrealistic because 

with the significant fraction of the population infected it becomes harder and harder to find a 

new individual to infect (also you cannot infect 1.1 people). 

  



Limit of a sequence. 

Definition. For every sequence (an) the sequence is called convergent iff 

(∃𝐿 ∈ ℝ)(∀𝜀 > 0)(∃𝑘𝜖ℕ)(∀𝑚𝜖ℕ)(𝑘 < 𝑚 ⇒ |𝑎𝑚 − 𝐿| < 𝜀). 

The number L is called the limit of an as n approaches ∞.  

We write lim
𝑛→∞

𝑎𝑛 = 𝐿 or an → 𝐿. 

Otherwise the sequence is called divergent. 

 

Notice that the sequence is convergent to L if, whenever somebody chooses an >0, you can 

find such an index k that all terms of the sequence with indices greater than k belong to the 

interval (𝐿 − 𝜀; 𝐿 + 𝜀). This means that for only finitely many terms of (an) their distance 

from L may be ≥ . 

FAQ 1. Does this mean that a sequence is convergent to L iff for every 𝜀 infinitely many of 

its terms are “𝜀 - close” to L? 

FAQ 2. Can a sequence have two (or more) limits? 

FAQ 3. Can a convergent sequence have two subsequences converging to two different 

limits? 

NO to all three. Suppose L and K are limits to an and K≠L. Put  

𝜀 =
|𝐾−𝐿|

2
 i.e.  is one half of the distance from K to L. Clearly  

(𝐿 − 𝜀; 𝐿 + 𝜀) ∩ (𝐾 − 𝜀; 𝐾 + 𝜀) = ∅   

so if for some k all terms of the sequence with indices >k belong to (𝐿 − 𝜀; 𝐿 + 𝜀) then they 

do not belong to (𝐾 − 𝜀; 𝐾 + 𝜀). 

Comprehension 1. Why is this the answer to all three FAQs? 

Comprehension 2. Why (𝐿 − 𝜀; 𝐿 + 𝜀) ∩ (𝐾 − 𝜀; 𝐾 + 𝜀) = ∅? 

 

Theorem 1. A sequence an is convergent iff there exists L such that all its subsequences 

converge to L. If this happens to be the case, then L is also the limit of the sequence an. 

Proof. (⇐)Obviously (an) is its own subsequence, hence if all subsequences converge to L 

then, in particular (an).  

(⟹)The same argument we used for FAQ 1,2,3 (slightly modified) works here. (How?) 

Theorem 1 is commonly used to prove divergence of a sequence:  

It is enough to find two subsequences convergent to different limits (e.g. odd- and even-

subscripted terms of the sequence (-1)n). 

  



FAQ. Is this the only way to show that a sequence is divergent? 

On the contrary, a divergent sequence may contain no convergent subsequences, hence no 

subsequences convergent to different limits. 

Theorem 2. A sequence an is convergent iff there exists L such that all its subsequences 

converge to L. If this happens to be the case, then L is also the limit of the sequence an. 

Proof. (⇐)Obviously (an) is its own subsequence, hence if all subsequences converge to L 

then, in particular (an).  

(⟹)The same argument we used for FAQ 1,2,3 (slightly modified) works here.  

Comprehension. How do you modify that argument? 

Theorem 2 is commonly used to prove divergence of a sequence:  

It is enough to find two subsequences convergent to different limits (e.g. odd- and even-

subscripted terms of the sequence (-1)n). 

Theorem 3. (Arithmetic properties of the limit) 

If  an  is convergent to A and bn to B. Then 

(1) an+bn is convergent and lim(an+bn) = A + B, 

 (2) an−bn  is convergent and lim(an−bn) = A − B, 

(3) an·bn  is convergent and lim(an·bn) = AB, 

(4) for every constant c ∈ ℝ, (can) is convergent and lim(can) = cA  

(5) (
𝑎𝑛

𝑏𝑛
) is convergent and lim(

𝑎𝑛

𝑏𝑛
) = 

𝐴

𝐵
 (if bn≠0 and B≠0). 

In short, arithmetic operations on convergent sequences preserve limits, (the limit of the sum 

is the sum of the limits etc.). 

Proof. (Outline of a proof of part 3). The starting point is, as always, the fundamental 

question, what the hell must we do. We will apply the definition to the sequence an·bn 

(∀𝜀 > 0)(∃𝑘𝜖ℕ)(∀𝑚𝜖ℕ)(𝑘 < 𝑚 ⇒ |𝑎𝑚𝑏𝑚 − 𝐴𝐵| < 𝜀) 

|𝑎𝑚𝑏𝑚 − 𝐴𝐵| = |𝑎𝑚𝑏𝑚 − 𝑎𝑚𝐵 + 𝑎𝑚𝐵 − 𝐴𝐵| =  

= |𝑎𝑚(𝑏𝑚 − 𝐵) + (𝑎𝑚 − 𝐴)𝐵| ≤  

≤ |𝑎𝑚(𝑏𝑚 − 𝐵)| + |(𝑎𝑚 − 𝐴)𝐵| = 

= |𝑎𝑚||𝑏𝑚 − 𝐵| + |𝑎𝑚 − 𝐴||𝐵| 

Here comes the tricky part – since the sequences converge to A and B we know that choosing 

sufficiently large m we can make each |𝑎𝑚||𝑏𝑚 − 𝐵| and |𝑎𝑚 − 𝐴||𝐵| as small as we like, for 

example smaller than 
𝜀

2
, hence the sum will be less than ε.   I will spare  you the details 

  



Comprehension 2. Notice that Theorem 3 is phrased as an implication (one-way implication) 

or rather a number of implications. Which (if any) of (1), (2) ,.., (5) are true in the opposite 

direction? 

Theorem 4 (Limits and inequalities) 

If  an  is convergent to A and bn to B and there exists k such that for every n>k  an ≤ bn then A 

≤ B. (The order is preserved by lim). 

Outline of a proof. Proof by contradiction. If A>B then we put  

2 = A-B. There is k such that for every n>k  an must be near A, and bn near B, ‘near’ 

meaning at a distance smaller than  = 
𝐴−𝐵

2
. In particular this means an>A − 

𝐴−𝐵

2
 = 

𝐴+𝐵

2
 and bn 

< B+
𝐴−𝐵

2
 = 

𝐴+𝐵

2
, hence for all n>k we have an> bn – contrary to our assumption. 

Theorem 5 (Sandwich theorem, squeeze lemma) 

If an and bn are both convergent to L and there exists k such that for every n>k  an ≤ cn ≤bn then 

the sequence cn is also convergent and also to L. 

Outline of a proof. Roughly speaking, if we want to guarantee that terms cn are closer to L 

than  it is enough to choose indices so large, that both an  and bn are -close to L. This 

guarantees that L- < an ≤ cn ≤ bn < L+. 

 

This theorem is incredibly useful. There are tons of sequences whose limits cannot be 

calculated by arithmetic operations on known, elementary limits and with the squeeze 

theorem they become … trivial. For example, consider  

𝑎𝑛 =
sin 𝑛

𝑛
. 

lim
𝑛→∞

sin 𝑛 does not exist (which is not quite trivial) but: 

for each n        
−1

𝑛
≤

sin 𝑛

𝑛
≤ 

1

𝑛
   

lim
𝑛→∞

 
−1

𝑛
 = 0  and  lim

𝑛→∞
 
1

𝑛
 =0 

Hence, by squeeze lemma, lim
𝑛→∞

 
sin 𝑛

𝑛
 = 0. 

 

Common pitfalls. 

A student is instructed to check if a sequence xn is convergent. He recalls “Uncle Tom said 

something about hamburgers”. He finds some sequences zn and yn. Now it may go several 

ways 



• zn and yn converge to the same limit so he announces proudly that xn is convergent. But he 

never bothers to check if (n) zn ≤ xn ≤yn. LOL, score 0. 

• (n) zn ≤ xn ≤yn but yn or zn is divergent. Whatever his conclusion it makes no sense, LOL. 

• (n) zn ≤ xn ≤yn,  zn and yn converge but to different limits. Just as the last one. 

I’ve seen those many times and I don’t want to see them again. Or else … 

 

Theorem 6. 

Every convergent sequence is bounded. 

Comprehension. Prove it from elementary principles (it means directly from the definition of 

the limit). 

 

Theorem 7. 

Not every bounded sequence is convergent, but every bounded and monotonic sequence is. 

Comprehension. Find a divergent and bounded sequence. 

We skip the proof of the second part. It involves the concept of the least-upper-bound of a 

bounded set of real numbers which we have not discussed (we will, in the context of 

functions). 

Theorem 8. 

The sequence (1 +
1

𝑛
)𝑛 is convergent. 

Hint. It turns out that the sequence is increasing and bounded from above, hence convergent 

by Theorem 5. 

For those interested – a detailed proof can be found in the slide show we were using for 

ETMAG lectures in the good old days. 

 

Definition 

We say that a sequence an diverges to  iff  

(∀r ∈ ℝ)(∃𝑘𝜖ℕ)(∀𝑛 > 𝑘) 𝑎𝑛>r  

We denote this by lim
𝑛→∞

 𝑎𝑛 =  

In a similar way we define divergence to −∞: 

(∀r ∈ ℝ)(∃𝑘𝜖ℕ)(∀𝑛 > 𝑘) 𝑎𝑛<r. 

So, in total, a sequence may be convergent (to a number), divergent or divergent to (plus or 

minus infinity). Note that + and −∞ are not numbers.



Theorem 9 

Important limits to remember: 

• If a>1 then lim
𝑛→∞

𝑎𝑛 =  

• If |a|<1 then lim
𝑛→∞

𝑎𝑛 = 0 

• If a>0 then lim
𝑛→∞

√𝑎
𝑛

 = 1 

• lim
𝑛→∞

√𝑛
𝑛

 = 1 

• lim
𝑛→∞

(1 +
1

𝑛
)𝑛 = e 

 

Theorem 10 (Properties of infinite limits) 

• If lim
𝑛→∞

 𝑎𝑛 =  then lim
𝑛→∞

1

𝑎𝑛
 = 0 (vulgar and misleading form 

1

∞
 = 0) 

• If lim
𝑛→∞

 𝑎𝑛 =  and (bn) is bounded from below then  

lim
𝑛→∞

 (𝑎𝑛+ bn) =  (vm form +c=) 

• If lim
𝑛→∞

𝑎𝑛 =  and for every n bnc for some c>0, then lim
𝑛→∞

𝑎𝑛𝑏𝑛 =  (vm form c = ) 

• If lim
𝑛→∞

𝑎𝑛 =  and 𝑎𝑛 ≤ 𝑏𝑛 for every n then lim
𝑛→∞

𝑏𝑛 =  (vm form squeeze lemma for 

infinities) 

 


